POLIQUIN SCORING SYSTEM

CLARITY OF OBJECTIVES - Reviewers prioritize studies with clear objectives (whether descriptive or hypothesis-testing)

2 Well thought out study objectives, or clearly stated and testable hypothesis
1 Stated objectives were poorly chosen or stated hypothesis was difficult to test
0 No clear objectives or hypothesis, or not relevant to Otolaryngology-Head and Neck Surgery

CHOICE OF APPROACH - Reviewers prioritizes studies that use the right research methods for the scientific question

2 Chosen study design was the best feasible method for testing the stated hypothesis/objectives (i.e. a robust design)
1 Chosen study design was sub-optimal but did test the stated hypothesis/objectives (i.e. an acceptable design)
0 Design did not test stated hypothesis/objectives, or not relevant to Otolaryngology-Head and Neck Surgery

VALIDITY - Were the right outcomes measured in the right way? Were potential confounders managed well? Is the story logical?

Specific Examples (abstract not required to fit in one of these specific categories-see general Scoring Criteria at left)

<table>
<thead>
<tr>
<th>Scoring Criteria</th>
<th>Clinical Trial</th>
<th>Observational Study</th>
<th>Survey</th>
<th>laboratory</th>
<th>Qualitative Research</th>
<th>Meta-Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Well-controlled, well protected from bias, and presented very clearly</td>
<td>Appropriately randomized, blinded, and controlled.</td>
<td>Excellent control of bias and confounding. Clear data acquisition.</td>
<td>Few non-respondents, sampling bias unlikely, clear constructs, robust analysis.</td>
<td>Excelled methods, and experimental control, can replicate.</td>
<td>Analytic framework, coding, and interview guides clear. Session notes and recordings.</td>
</tr>
<tr>
<td>1</td>
<td>Protection against bias, experimental control, and presentation satisfactory</td>
<td>Randomized for main outcome, vulnerable to bias or poor blinding</td>
<td>Bias/confounding controlled with some shortcomings; data acquisition reasonable</td>
<td>Response rate adequate but not impressive, valid constructs, clear analyses.</td>
<td>Adequate methods and experimental controls</td>
<td>Analytic framework, coding, or guides not perfect, session notes or recordings</td>
</tr>
<tr>
<td>0</td>
<td>Poorly controlled and vulnerable to bias, vague, confusing, or illogical</td>
<td>Not randomized for main outcome, or faulty randomization</td>
<td>Unclear methods, vulnerable to bias/confounding, or invalid data acquisition</td>
<td>Flawed logic, low response rate, or respondents may differ from non-respondents</td>
<td>Methods invalid, poor experimental control, or cannot replicate</td>
<td>Analytic framework, coding or guides not specified, or poor session documentation</td>
</tr>
</tbody>
</table>
STATISTICS—Reviewers prioritize studies that use statistics correctly.

X Skip this question because statistics are not applicable—this is a study type that should not be scored based on inferential statistics (e.g. qualitative study).
2 Statistical methods and conclusions are correct. The reader has a clear understanding of the possibility of Type I and Type II error.
1 Statistical methods and conclusions are technically flawed, but the reader is able to understand the possibility of Type I and Type II error.
0 The reader it not given a clear understanding of the relative importance of variation targeted for measurement versus random variation (i.e. signal vs. noise).

SCOPE—Reviewers prioritize large multicenter studies over small single–center studies

X Skip this question because this is a basic science study or another study type for which scope if clearly not relevant.
2 Large, multicentre study likely to be published in major journal. For example, randomized trial with > 5 sites and >200 subjects or large multicenter educational study.
1 Moderate sized study. For example, a randomized trial of 100 subjects at 3 centers or a process improvement that includes 5 centres in different provinces
0 Small N in a study of a common disease. For example, a clinical trial of 50 subjects at one centre, or a qualitative study with 8 participants.

IMPORTANCE OF TOPIC—Reviewers prioritize topics of major importance to large numbers of Otolaryngology researchers or clinicians. Reward innovation.

2 This topic, or its foreseeable progeny, is relevant to every Otolaryngologist or is highly innovative.
1 This is an important topic that will lead to information of interest to many or most Otolaryngologists, including those who do not study this topic.
0 This topic is only of interest to the small groups of peoples who study it, and is unlikely to results in important knowledge

PUBLICATION READINESS—Does this abstract reflect high quality writing and attention to detail?

2 Perfect grammar, no errors, very clear expression of ideas. Conforms to our CSO submission guidelines.
1 Generally well written but leaves room for confusion on some concepts or has one or two errors.
0 Poorly written. Hard to understand idiosyncratic phrasing, or awkward abbreviations.