Three-dimensional analysis of simulated mandibular reconstruction using a segmental mirroring technique.

Otolaryngology - Head \& Neck Surgery

UNIVERSITY OF TORONTO
JC Davies ${ }^{1,2}$, HHL Chan², DP Goldstein ${ }^{1,3}$, JC Irish ${ }^{1,2,3}$

Background

rimary goals of oromandibular reconstruction include: (1) Re-establish mandibular
(2) Restore oral function

Adaptation of a reconstruction plate over distorted bone can result in malocclusion, temporomandibular joint dysfunction and an increased risk for plate extrusions

Novel techniques permit 3D simulated resection and reconstruction of mandibular segments using a mirrored, or inverted, image of the unaffected contralateral mandible

3D sterelithographic models can be printed, using this technique, to fashion a reconstruction plate prior to surgery

No study has examined the accuracy of this method using quantitative parameters based on the classification of defect using the Brown et al (2016) classification system (Fig. 1) canine, not condyle included.

FIGURE 1. Classification of mandibular defects: (A) Class IC - Lateral defect including condyle (B) Class II- Hemimandibulectomy including
(C) Class IIc - Hemimandibulectomy including
(D) Class III- Anterior mandibulectomy, angles not

Objective

To perform quantitative conformance analysis of simulated mandibular defects and their corresponding inverted contralateral mandibular segment using CT generated 3D computer models

Materials and Methods

mage Acquisition \& Virtual Segmentation

CT images (head/neck) were obtained, and retrospectively analyzed ($n=10$)

- Images were imported to a workstation and semiautomatic segmentation was performed (Mimics version 18.0 - Materialise, Leuven, Belgium).

Bone and soft tissue were differentiated by intensity threshold and regions of bone specific to the mandible were isolated (Fig. 2).

Areas of bone encompassing defect classes Ic, II, IIc and III were segmented, inverted and merged with the corresponding contralateral mandible (Fig. 2).
${ }^{1}$ Department of Otolaryngology - Head \& Neck Surgery, University of Toronto, Toronto, ON
Guided Therapeutics Laboratory, TECHNA Institute, University Health Network, University of Toronto, Toronto, ON
${ }^{3}$ Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON

FIGURE 2. Method required for performing conformance analysis. (A) Segmentation, (B) 3 D Modeling (C) Vitual Ostetmies, (D) Segmental Inverion, (F) Co-egistration and (F) Morerhologic Analysis.

Volumetric/Conformance Analysis:

Conformance distance (mm) was calculated between each vertex on the mandibular segment and the nearest three vertices on the corresponding contralateral inverted segment and displayed in colour coded maps (Fig. 3)
The root-mean-square (RMS) conformance, a metric for morphologic similarity, was calculated for each comparison.

Eight different reconstructive scenarios were analyzed for each patient: bilatera classes Ic, II, IIc and III

Statistical Analysis

Paired t-tests were performed ($p<0.05$ deemed statistically significant)

- All descriptive statistics were calculated with SAS 9.3 (SAS Institute, Cary, NC, USA)

FIGURE 3. Conformance mapping and distance (mm) of segmented mandibular bone coregistered with the corresponding contralateral inverted segment: (A) Class Ic reconstruction (B) Class II reconstruction (C) Class IIc reconstruction and (D) Class III reconstruction. Colourpoor conformance in red

Results

A high degree of overall conformance ($<1 \mathrm{~mm}$), was observed when comparing all classes of simulated reconstruction (Table 1).

There was no significant difference between RMS conformance distances when comparing side of simulated reconstruction for all classes (Ic: $p=0.74 ;$ II: $p=$ 0.90 ; Ilc: $\mathrm{p}=0.66$; III: $\mathrm{p}=0.59$).

- Closest mean RMS conformance was observed for class III simulated reconstructions (right: $0.4 \pm 0.3 \mathrm{~mm}$; left: $0.4 \dagger 0.2 \mathrm{~mm}$), and were significantly reconstructions (right: $0.4 \pm 0.3 \mathrm{~mm}$; left: $0.4 \dagger 0.2 \mathrm{~mm}$), and were significantly
improved in comparison to classes Ic $(p<0.01)$, II $(p<0.01)$ and IIc $(p<0.01)$.
- Inclusion of the condyle within the simulated reconstruction resulted in poorer mean RMS conformance in comparison to all other classes (class Ic - right: $0.7 \pm 0.4 \mathrm{~mm}$; left: $0.7 \pm 0.5 \mathrm{~mm}$; class IIc - right: $0.7 \pm 0.5 \mathrm{~mm}$; left: $0.7 \pm 0.5 \mathrm{~mm}$)

Table 1. Mean RMS conformance distances (mm) for simulated reconstructions of four mandibular defect classes ${ }^{\dagger}$ using contralateral inverted segments ($\mathrm{n}=10$).

Right mandibular segment inverted				Left mandibular segment inverted			
Ic	II	IIc	III	Ic	II	IIc	III

0.7 ± 0.4	0.6 ± 0.4	0.7 ± 0.5	0.4 ± 0.3	0.7 ± 0.5	0.6 ± 0.4	0.7 ± 0.5	0.4 ± 0.2

\dagger Brown et al (2016) classification of mandibular defects

Discussion

The segmental mirroring technique provides a highly accurate method of reproducing the native contours of the most common mandibular defects

- While a high degree of conformance was observed for all defect classes ($<1 \mathrm{~mm}$), class III (anterior defects) had the best conformance
- This technique would prove most useful in circumstances of significantly deforming bony tumors of the mandible.
- Reconstruction plates adapted to 3D stereolithographic models that have been printed using the segmental mirroring technique may enable reconstructive surgeons to better restore occlusion and limit plate related complications

Further studies in patient populations are required to better evaluate the clinical benefits of using this technique

Funding

Funding Sources: Guided Therapeutics (GTx) Program, University Health Network, Strobele Family GTx Research Fund, Kevin and Sandra Sullivan Chair in Surgical Oncology, Hatch Engineering Fellowship Fund, and Princess Margaret Hospital Foundation.
GTxSURGERYPROGRAM
The Princess Margaret
Cancer Foundation [10 UHN

